Synthesis and Structure of a Novel Aluminoarsenate with an Open Framework
 Guangdi Yang, ${ }^{\text {a }}$ Li Li,a Jiesheng Chen, ${ }^{\mathrm{b}}$ and Ruren Xub*
 a Institute of Theoretical Chemistry, and
 ${ }^{\text {b }}$ Department of Chemistry, Jilin University, Changchun, People's Republic of China

An aluminoarsenate, $\mathrm{Al}_{2} \mathrm{As}_{2} \mathrm{O}_{8}$-ethanolamine, denoted as $\mathrm{AlAsO}_{4}-1$, has been synthesized hydrothermally; single crystal X-ray diffraction shows that its framework possesses micropores running along the a-axis.

Since the first series of microporous aluminophosphates denoted as $\mathrm{AlPO}_{4}-n^{1}$ was prepared in 1982, these materials have been extensively studied. ${ }^{2-4}$ Some of them are isostructural with known zeolites, but a majority have novel structures. ${ }^{5}$ Recently, the synthesis and structural determination ${ }^{6.7}$
of gallophosphates with frameworks as open as those of $\mathrm{AlPO}_{4}-n$ have been reported. We report the synthesis and structure of a novel aluminoarsenate with an open framework.

To synthesize the title aluminoarsenate, pyroarsenic acid, aluminium isopropoxide, the organic template EAN (EAN =

Figure 1. Stereoview of the $\mathrm{AlAsO}_{4}-1$ framework along the a-axis, showing connections between alternating Al and As atoms. All Al and As atoms are represented by circles.

Figure 2. Asymmetric unit of $\mathrm{AlAsO}_{4}-1$. Bond lengths: $\mathrm{Al}(1)-\mathrm{O}(3)$ 1.728, $\mathrm{Al}(1)-\mathrm{O}(5) 1.733, \mathrm{Al}(1)-\mathrm{O}(8 \mathrm{a}) 1.751, \mathrm{Al}(1)-\mathrm{O}(9 \mathrm{a}) 1.718$, $\mathrm{Al}(2)-\mathrm{O}(1 \mathrm{a}) 1.913, \mathrm{Al}(2)-\mathrm{O}(2) 1.883, \mathrm{Al}(2)-\mathrm{O}(4) 1.949, \mathrm{Al}(2)-$ $\mathrm{O}(4 \mathrm{a}) 1.927, \mathrm{Al}(2)-\mathrm{O}(6) 1.879, \mathrm{Al}(2)-\mathrm{O}(7) 1.844, \mathrm{As}(1)-\mathrm{O}(1) 1.682$, $\mathrm{As}(1)-\mathrm{O}(2) \mathrm{I} .668$. $\mathrm{As}(1)-\mathrm{O}(3) 1.698, \mathrm{As}(1)-\mathrm{O}(7 \mathrm{a}) 1.678, \mathrm{As}(2)-$ $\mathrm{O}(5 \mathrm{a})$ 1.667. $\mathrm{As}(2)-\mathrm{O}(6)$ 1.649. $\mathrm{As}(2)-\mathrm{O}(8) 1.676, \mathrm{As}(2)-\mathrm{O}(9)$ 1.668 A.
ethanolamine), and distilled water were mixed in the molar ratio of $0.8 \mathrm{EAN}: \mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{As}_{2} \mathrm{O}_{5}: 40 \mathrm{H}_{2} \mathrm{O}$, and stirred until homogeneous. The mixture was sealed in an autoclave lined with polytetrafluoroethylene and heated in an oven at $150-200^{\circ} \mathrm{C}$ for 4 days. The product was filtered, washed with distilled water, and dried in air at about $80^{\circ} \mathrm{C}$. Excellent single crystals suitable for structural analysis by X-ray diffraction could be selected readily. \dagger

The molar ratio $\mathrm{Al} / \mathrm{As}$ of $\mathrm{AlAsO}_{4}-1$ was measured by chemical analysis to be unity. The elemental analyses (C, 6.02;

[^0]$\mathrm{H}, 1.74: \mathrm{N}, 3.43 \%$) indicated that $\mathrm{AlAsO}_{4}-1$ has the empirical formula of $\mathrm{AlAsO}_{4} \cdot 0.5$ EAN. Structural analysis indicated that in each unit cell there are 16 Al atoms, 16 As atoms, and 8 EAN molecules. Topologically, the three-dimensional framework of $\mathrm{AlAsO}_{4}-1$ is based on up-down linkages from a $4 \cdot 8 \cdot 8$ two-dimensional net ${ }^{8}$ (Figure 1), and the largest one-dimensional open channel of the framework results from packing of 8 -membered rings along the a axis. There is no channel in any other direction. The formula of the asymmetric unit (as shown in Figure 2) appears to be $\mathrm{Al}_{2} \mathrm{As}_{2} \mathrm{O}_{8}$. EAN which is concordant with the empirical formula above. Of the 9 oxygen atoms, $\mathrm{O}(4)$ or $\mathrm{O}(4 \mathrm{a})$ is that of EAN molecule. As for the P atom in $\mathrm{AlPO}_{4}-n^{5}$ or $\mathrm{GaPO}_{4}-n, 7$ each As atom in $\mathrm{AlAsO}_{4}-1$ is strictly four-co-ordinated by 4 oxygen atoms which are linked with 4 Al atoms. It is of considerable interest that in the asymmetric unit one Al is strictly four-co-ordinated and the other is six-co-ordinated. The former shares 4 oxygen atoms with 4 adjacent As atoms and the latter not only shares 4 oxygen atoms with 4 adjacent As atoms but also is double bridged with another equivalent Al atom by two oxygen atoms of the EAN molecules located in two 8 -membered ring channels (Figure 1 does not show the organic template EAN). All the coordination polyhedra of the AlO_{4} and AsO_{4} units are slightly distorted tetrahedra, and all those of the AlO_{6} units are strongly distorted octahedra. The length difference between the longest $\mathrm{Al}-\mathrm{O}$ bond and the shortest one in each AlO_{6} unit is $0.105 \AA$, and the largest difference between two O-Al-O angles is 16.4°.

We conclude that besides Al, P, and O atoms, Al , As, and O atoms are also able to construct a three-dimensional open framework.

Received, 25th October 1988; Com. 8/04250K

References

1 S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, J. Am. Chem. Soc., 1982, 104, 1146.
2 E. M. Flanigen, B. M. Lok, R. L. Patton, and S. T. Wilson, Proceedings of the Seventh International Zeolite Conference, Kadasha, Elsevier, 1986, p. 103.
3 M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowder, Nature, 1988, 331, 698.
4 J. V. Smith, Chem. Rev., 1988, 88, 149.
5 D. Breck, 'Zeolite Molecular Sieve, Wiley, New York, 1974.
6 J. B. Parise, J. Chem. Soc., Chem. Commun., 1985, 606.
7 G. Yang, S. Feng, and R. Xu, J. Chem. Soc., Chem. Commun., 1987, 1254.
8 J. V. Smith, Am. Mineral., 1978, 63, 960.

[^0]: + Crystal data: $\mathrm{Al}_{2} \mathrm{As}_{2} \mathrm{O}_{8} \cdot \mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}, M=392.88$, orthorhombic, space group Pcab, $a=8.781(2), b, 10.261(5), c=20.433(2), \AA, U=$ $1841.20 \AA^{3}, Z=8, D_{\mathrm{c}}=2.834 \mathrm{~g} \mathrm{~cm}^{-3} . F(000)=1495, \mu=74.70$ cm^{-1}. SHELXTL. Mo- $K_{\alpha} 0.71059 \AA$, graphite monochromator, Nicolet XRD R ${ }_{3}$ diffractometer, variable speed. scan mode $\theta-2 \theta$. The intensity data were collected within $3<2 \theta<55^{\circ}$; the structure was solved by direct methods on the basis of 1730 significant $[I \geqslant 3.5 \sigma(I)$] reflections. Refinement by full-matrix least-squares led to final R and R_{w} values of 0.0401 and 0.0344 respectively. Atomic co-ordinates, bond lengths and angles, and thermal parameters have deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors. Issue 1 .

